Amino Acid

16 Ocak 2008 Çarşamba

Overview

Alpha-amino acids are the building blocks of proteins. A protein forms via the condensation of amino acids to form a chain of amino acid "residues" linked by peptide bonds. Proteins are defined by their unique sequence of amino acid residues; this sequence is the primary structure of the protein. Just as the letters of the alphabet can be combined to form an almost endless variety of words, amino acids can be linked in varying sequences to form a huge variety of proteins.
Twenty standard amino acids are used by cells in protein biosynthesis, and these are specified by the general genetic code. These twenty amino acids are biosynthesized from other molecules, but organisms differ in which ones they can synthesize and which ones must be provided in their diet. The ones that cannot be synthesized by an organism are called essential amino acids.

Functions in proteins
See also: Primary structure and Posttranslational modification

A polypeptide is a chain of amino acids.
Amino acids are the basic structural building units of proteins. They form short polymer chains called peptides or longer chains either called polypeptides or proteins. The process of such formation from an mRNA template is known as translation which is part of protein biosynthesis. Twenty amino acids are encoded by the standard genetic code and are called proteinogenic or standard amino acids. Other amino acids contained in proteins are usually formed by post-translational modification, which is modification after translation in protein synthesis. These modifications are often essential for the function or regulation of a protein; for example, the carboxylation of glutamate allows for better binding of calcium cations, and the hydroxylation of proline is critical for maintaining connective tissues and responding to oxygen starvation. Such modifications can also determine the localization of the protein, e.g., the addition of long hydrophobic groups can cause a protein to bind to a phospholipid membrane.

Non-protein functions
The twenty standard amino acids are either used to synthesize proteins and other biomolecules, or oxidized to urea and carbon dioxide as a source of energy.[2] The oxidation pathway starts with the removal of the amino group by a transaminase, the amino group is then fed into the urea cycle. The other product of transamidation is a keto acid that enters the citric acid cycle.[3] Glucogenic amino acids can also be converted into glucose, through gluconeogenesis.[4]
Hundreds of types of non-protein amino acids have been found in nature and they have multiple functions in living organisms. Microorganisms and plants can produce uncommon amino acids. In microbes, examples include 2-aminoisobutyric acid and lanthionine, which is a sulfide-bridged alanine dimer. Both these amino acids are both found in peptidic lantibiotics such as alamethicin.[5] While in plants, 1-Aminocyclopropane-1-carboxylic acid is a small disubstituted cyclic amino acid that is a key intermediate in the production of the plant hormone ethylene.[6]
In humans, non-protein amino acids also have biologically-important roles. Glycine, gamma-aminobutyric acid and glutamate are neurotransmitters and many amino acids are used to synthesize other molecules, for example:
Tryptophan is a precursor of the neurotransmitter serotonin
Glycine is a precursor of porphyrins such as heme
Arginine is a precursor of nitric oxide
Carnitine is used in lipid transport within a cell,
Ornithine and S-adenosylmethionine are precursors of polyamines,
Homocysteine is an intermediate in S-adenosylmethionine recycling
Also present are hydroxyproline, hydroxylysine, and sarcosine. The thyroid hormones are also alpha-amino acids.
Some amino acids have even been detected in meteorites, especially in a type known as carbonaceous chondrites.[7] This observation has prompted the suggestion that life may have arrived on earth from an extraterrestrial source.

1 yorum:

creative peptides dedi ki...

Chemical modifications of peptides introduced strategically at potential enzymatic cleavage sites may dramatically increase the in vivo stability of peptide drug candidates. Amino Acids Modification